
ADA115 54 AIR FORCE INST OF TECH WRIHT-PATTERSON AFS OH SCHOO-ETC F/S 9/2

AN INTERMEDIATE LANGUAGE AND INTERPRETER FORi THE AWGOL OAAAICS--ETC(U)
0C I1 K P ALBERT

UCLASSZFIED AFIT/4CS/NA/BID-1*uuuuuhuullhu
Emmhhmmhhhhhhl
IEIIIEEEEIIEI
IIIIIIIIIIIIIu
IIIIIIIIIIIIII
lllllllllllhl
IIIIIIIIIIIIII

I, *

UNITED STATES AIR FORCE lbo
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
LU Wright-Pattersoun Air Force Ses*,Ohio

Sr 14hISO

An Intermediate Language and

Interpreter for the

ASGOL Graphics Language

AFIT/GCS/MA/81D-1 Kevin P. Albert

Capt USAF C

1 '
* tV~' '.

*11

AFIT/GCS/MA/81D-1

An Intermediate Language and

Interpreter for the

ASGOL Graphics Language

Thesis

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

*1

by

Kevin P. Albert, B.A.

*Capt. USAF

Graduate Computer Systems

December 1981

Approved for public release; distribution unlimited.

--- ploAd I aIc r .lease;
9WIb* Iami

The construction of languages and compilers has always

been an area of fascination for me. It is not surprising,

then, that when the opportunity to do this thesis presented

itself I did not hesitate.

I would like to take this opportunity to thank Major

Michael C. Wirth for his support as my advisor on this

thesis project. I would also like to thank Professor

Charles Richard and Captain Roie Black for their ideas and

comments. In addition I would like to thank Mike Luthman of

AFWAL/ACD for his comments during the preparation of the

users manual.

Finally, I would especially like to thank my wife Beth

for her understanding and support during the course of the

project. Without her encouragement the project would never

have been completed on time.

Acoesslen ror

1PTZS GRA&Z

D2'IC TA.3 7
Uhasn o':n cod [
Justification-

DiSt r t.ttcn/!....
cop AvaiJqblltv Coris

3 AvJ. kI/or

Dist I_

Contents

List of Figures

Abstract . a vi

I.* Introduction o1

Problem and Scope & . . * . a .2

Assumptions o * - .3

Approach o . . 3

Organization 4

II. Requirements and Specifications6

User Requirements . . . o6

DISSPLA Requirements7

System Configuration 10

III. ASGOL Language Design 13

Block Structure o 16

Loop and Control Structures o 19

. oh

IV. Parser . 21

Scanner . 21

Parser . 24

LR(1) 24

Automatic Parser Generator 25

Construction 27

Semantic Routines 27

Symbol Table 29

Implementation of Labels 33

V. Intermediate Language and Interpreter . . 0 0 . .. 36

AIL 36

Interpreter 38

VI. Applications 42

VII. Recomendation o 50

Segmentation 0 . 50

Error Recovery 51

Optimization of AIL 52

Functions and Procedures 52

Use of Additional DISSPLA Features . o 53

Bibliography . 54

Appendix A: BNF of ASGOL o 56

Appendix B: AIL Instructions o . . . o 83

Appendix C: Conditional and Looping Productions 89

Appendix D: Compiler Routines 93

Appendix E: Interpreter Routines 98

Appendix F: Users Manual103

iv

W I. . .p

1. DISSPLA Processing 11

2. Functional System Chart 12

3. Program layout with Comments 14

4. ASGOL Program Levels18

5. Scanner Organization 23

6. LR Parsing Steps 25

7. Parser organization 28

8. Hash Function Example 30

9. Hash Chaining 32

10. Lexical Level Termination 34

11. Interpreter Machine Structure 39

12. Use of Display Areas 41

13. Line and Arrow Instructions 43

14. Line and Arrow Plot 44

15. Bar and Linear Text. 45

16. Bar and Linear Graph o . . . 46

17. Pie Graph Example o . . 47

18. Text Instructions 48

19. Text Graph . 49

v

AFIT/GCS/MA/81D-1

'In an effort to make ASGOL (ALGOL-Structured Graphics

Oriented Language) more powerful, conditional and looping

instructions were added to the language. To do this the

existing interpreter system was converted to a

compiler/interpreter system. An intermediate language was

designed as the compiler output and thus the source language

for the interpreter.

vi

An Intermediate Language and

Interpreter for the

ASGOL Graphics Language

I. Introduction

Anyone who has had a large amount of data to analyze is

well aware that computer graphics is a very powerful tool.

Not only is much time saved by having the computer do most

of the processing, but by using a graphic format the results

are presented in a clear, concise form. This is

particularly important for any manager or commander who

needs those results to make critical decisions.

Thus, there is a need for graphics that can be produced

quickly and accurately with a minimum of effort. However,

the people who possess the detailed knowledge and training

for this job are not always available, leaving the

responsibility for the creation of meaningful products to

people with little knowledge of computers or graphics.

Therefore, various graphic packages have evolved to simplify

this process while still giving the desired results.

Il

The Air Force Wright Aeronautical Laboratory

(AFWAL/ACD) recognized the need for a management graphics

system to interface with the Display Integrated Software

System and Plotting Language (DISSPLA) graphics package (Ref

1) that is now being used. DISSPLA is a very complex system

and requires a FORTRAN program to make it work.

Unfortunately, the office in AFWAL that uses the system has

no full time programmers. Therefore, it was essential that

an easier way of using the system be found.

To solve this problem the lab sponsored a thesis by

Lieutenant James D. Hart (Ref 2). The goal of Hart's

effort was to develop a system that would be easily readable

and easily used by anyone without a detailed understanding

of FORTRAN or the DISSPLA system. In that thesis Lt. Hart

designed a language (ASGOL) and set up an interpreter system

to execute it.

Problem and S

There are two problems with Lt. Hart's system. The

first and most important deals with its structure. Each

instruction is executed and discarded as soon as it is

decoded, leaving no way for conditional and looping type

structures to be implemented. Since these structures are

useful, this thesis effort involved the redesign of ASGOL

and the interpreter system to include them. With the

2

exception of some simplification of ASGOL, only those

changes necessary to implement the desired instructions were

done.

The second problem involves the size of the system.

Due to the large size requirements of DISSPLA, this system

cannot be run interactively. As this was one of the

sponsor's requirements, this problem was investigated.

Assumptions

The two major parts of the system, the LR(1) parser and

the DISSPLA graphics system, were kept with few changes. It

was accepted that a table driven LR(1) parser and the

DISSPLA graphics package were the best tools available.

Therefore, no attempt was made to identify or implement a

replacement for either one.

Aproach

The first step in this thesis effort was to identify

the most useful conditional and looping structures. Then,

in order to implement them within ASGOL, an intermediate

language (AIL) was designed. This allowed the execution of

the program to be delayed until after all the instructions

had been decoded.

3

Two major changes were then made to the system to

incorporate AIL. First the parser had to be modified to

produce the appropriate AIL commands as the program

instructions were decoded. After this was done it was

necessary to design and implement a new interpreter to

execute AIL and produce the plots. These modifications

effectively changed the ASGOL system from a direct

interpreter to a compiler/interpreter combination.

Organization

Included in the remainder of this thesis is a

discussion of the requirements and specifications of the

system (Chapter II) and a discussion of ASGOL (Chapter III).

Chapter IV describes the scanner and the parser while

Chapter V covers AIL and its interpreter. Chapter VI is

included to provide an analysis of the applications of the

system. Finally, Chapter VII gives conclusions and

recommendations for enhancements.

Several appendices are also included to provide more

detailed information. Appendix A is a listing of the formal

definition of ASGOL and Appendix B lists the AIL statements.

Appendix C then details the steps involved in each

production of the looping and control statements.

Appendices D and E describe the software modules associated

with the scanner, the parser, and the interpreter. With

4

Appendices A, B and C they make up a maintenance manual for

the system. Finally a users manual is included as Appendix

F.

--

IL. Re. ui.rements~ and Specifications

_Ue Requirements

Once a month AFWAL/ACD, the thesis sponsors, generate a

Commander's report (a series of graphs and tables) that

currently is created in part using the DISSPLA system. The

tables, however, are done by hand. The ASGOL system was

designed to generate the appropriate DISSPLA commands to

allow the entire report to be created using the CDC CYBER

computer. In performing this function it was requested that

the ASGOL system have the following characteristics:

1. easily used,

2. capable of using data from user specified files,

3. capable of running selected parts of the report,

4. capable of graphics blow-up.

The ease of use requirement was met by designing ASGOL

as a high-level language. This allowed it to be made

machine independent and thus requires no specific knowledge

of any computer system by the user. In addition, ASGOL was

made free format to allow a user complete freedom to

organize the program in a clear, meaningful manner. Perhaps

more important to this requirement, though, was the

incorporation in ASGOL of as many English language

instructions as possible. A user needs only to state what

6

is wanted and does not have to worry about the translation

of terms into DISSPLA commands. For example, the

specification of plot type is done simply by naming the type

desired; LINEAR, BAR, PIE, etc. ASGOL keeps track of the

relationship of these terms to their DISSPLA routines. See

Chapter 3 for more detail on the structure of ASGOL.

The capability to use data from user specified files

was incorporated into ASGOL through the use of the INPUT

instruction. This instruction allows the source tape number

to be specified when the program is written making any data

file available to the system.

The last two capabilities, running selected parts and

graphic blow-up, are available in the DISSPLA Post Processor

System (Ref 3). Therefore no special action was taken in

the ASGOL system to duplicate any of these functions. The

following description of the DISSPLA system will discuss

these functions in more detail.

DISSPLA Requirements

The DISSPLA graphic system consists of a number of

integrated subroutines that create a device independant plot

file. On the CYBER these routines are written in FORTRAN IV

and thus they require any program that calls them to be

written in the same language. Any other language (PASCAL,

7'

..................................

FORTRAN V, FORTRAN 77, etc.) will not work because the I/O

done by the DISSPLA routines will have unpredictable results

(Ref 4). It was this fact that placed probably the most

severe restriction on the ASGOL system. By forcing the

system to be written in FORTRAN IV all of the convenience

and power of the other languages was unavailable, resulting

in a needlessly complex system.

To create a plot DISSPLA requires that information be

specified in four areas: page size, axis lengths, origin,

and step sizes. These areas must be specified in the order

listed since each depends on the information in the areas

preceeding it (Ref 2: Part A 3-1). It is ASGOL's

responsibility to ensure that all needed information is

specified in the correct order as the user is not required

to have an understanding of the DISSPLA structure. When the

information for a plot is being accumulated the DISSPLA

system goes through a series of four levels. After each

successive level is reached it is not possible to return to

a lower level until the plot is finished. Therefore, since

all information has a specific level or levels that it can

be defined on, ASGOL must also ensure that a new level is

reached only after all required information has been

specified. Table 1 lists these levels and their meaning.

Ii8r

TABLE I

DISSPLA Levels

Level Status

0 Initial Status

1 After Initialization Routine

2 Page Dimensions, Axis lengths and

Physical Origin Have Been Defined

3 Step Size Defined. Plot is Fully

Determined.

The DISSPLA system also consists of a number of Post

Processors which prepare output for various display devices.

Currently available on the CYBER are the following: CALCOMP,

Tektronix 4010, Tektronix 4014, ZETA plotter, and CDC274

(Ref 3:2). These processors take the file created by the

plotting routines and allow the plots to be seen on a number

of devices (Figure 1). In addition the plots can be

modified according to the following features:

1. selective plotting,

2. windowing of a plot (blow-up),

3. relocation of plots relative to each other,

4. scaling,

9

5. superimposing of plots (Ref 3:5).

These features are well defined in the DISSPLA manual and

required only minor actions from the ASGOL system to be

available.

S Configuration

The ASGOL system consists of three main parts; the

Parser, the Semantic routines, and the Interpreter. The

parser performs the syntax checking of ASGOL and when

applicable calls the appropriate semantic routine. See

Chapter 4 for details of the parser construction. The

semantic routines in turn check the semantics of the
language and generate the appropriate AIL instructions to

perform the required plot functions. These routines are

part of the parser and are also discussed in more detail in

Chapter 4. Finally, the interpreter is responsible for

decoding and executing the AIL instructions and generating

the necessary DISSPLA commands. See Chapter 5 for a

complete discussion of the structure and function of the

interpreter.

By using a file to pass the AIL instructions from the

parser to the interpreter the ASGOL system was separated

into a two step process. This allows the parser to be run

to check syntax without running the interpreter. In the

10

I OISSPLA
1 ProgramI

Program SPL

(using IIS L
surutns Pen Up/'Down- CommandsI

j Compressor
Routines

L------------
Minimum Length Byte Stream

TemporaryDevice IndePern2ent

Storage NtFl

Byte Stream

OecompressorI Routines

I Pen Up/Down Commands

!DISSPO.P OISSPOP

Plotter C~RT .!.irrofi! D~evice

Driver Driver Driver DVetr

Device Dependent Instructions

Figure 1. DISSPLA Processing

AG0L SCANNER PARSER PRODCT, M_.-4_. DISSPL
PR&A VreNES CALLS

09JEcr CODE FiLE

Figure 2. Functional System Chart

same way the interpreter can be run as often as desired

without having to rerun the parser portion of the system.

Figure 2 shows the relationship of the parts of the ASGOL

system.

1f2

12

Ill. AL Lansati D~sin

Format

The intention of ASGOL, as designed by Lt. Hart (Ref

1:7-17), was to be as independent of DISSPLA and as machine

independent as possible. The first objective was met by

assuring that a one-to-one correspondance of ASGOL

statements to DISSPLA commands was not forced upon the user.

ASGOL instructions were designed to be meaningful English

language statements and, so, one statement could generate a

sequence of DISSPLA commands or no commands at all. (See

Appendix A for a listing of the ASGOL productions.) Although

this makes the code generation in the parser more difficult,

the advantages to the user are well worth the extra effort

as this effectively frees the user from the need to know any

details of the DISSPLA system.

By basing the language on ALGOL, a high-level language,

the second objective was achieved. A high-level language

can be largely machine independent, therefore, it is not

necessary to even know what computer the system is to be run

on to write the ASGOL program. However, this does not imply

that the current implementation can be run on any machine

since it contains several CDC dependent routines. It simply

means that an ASGOL language contains no machine dependant

13

features.

For further ease in using the language, ASGOL was also

made free format. This means that there is no column

dependency (such as in FORTRAN) for the instructions. The

user is totally free to space the instructions over one or

several lines as necessary for program clarity. There is

also no restriction on the number of lines or cards that can

be used for this purpose.

PROGRAM example

DECLARE

CONSTANT PI 3.14159 / comment on same line /

VARIABLE

A, / instruction over many lines I

B, / with comments within the 'I

C, /, instruction. */

D : INTEGER

END DECLARE

END PROGRAM example.

Figure 3. Program Layout With Comments

F 14

To complement this freedom of spacing, the ability to

place comments anywhere within a program, was provided.

Comments begin with the characters /* and end with */.

Anything in between is ignored by the compiler so comments

can appear on the same line as an instruction or even within

an instruction. Figure 3 shows examples of line spacing and

comments. Note that the spacing can be used for

indentation. With these features, the ASGOL program should

be easily readable and understandable.

Unlike some other languages that have been designed to

interface with DISSPLA (Ref 5), ASGOL was not structured to

be open-ended. In an open-ended language it is necessary to

specify only the beginning parameters in a list if the

remaining are to be used with their default values. This

approach works well until it becomes necessary to change

only a parameter at the end of the list. In this case the

default values, if known, have to be entered or a series of

commas must be used to designate the parameters' positions.

It is obvious that this can lead to difficulties if a

default value is forgotten or if the number of commas is

miscounted. To avoid these difficulties, any parameter that

is optional in ASGOL will assume a default value if it is

not specified. Just removing the parameter from the list is

sufficient to acomplish this. For example, in the

definition of a page the margin parameter is optional. If

included the instruction becomes:

15

PAGE example (VERTICAL,LEFT RESETI.O,TOP).

If, however, the default value is all that is needed the

instruction simplifies to the following:

PAGE example (VERTICAL,1.0,TOP).

Not only is this easier to deal with, it eliminates the

potential for errors present in the other approaches.

When large programs are written it is commonly agreed

that they need to be divided into smaller modules whenever

possible. This is true for the following reasons:

1. improved readability;

2. improved testability;

3. enhanced organization (Ref 6:281).

To accomplish this aim, subprograms have been incorporated

into most languages. Initially the two types, procedure and

function, were allowed to communicate with the main program

only through parameters passed by the calling mechanism.

This approach was sufficient as long as the desired amount

of data to be shared was small. If not, the parameter list

could be quite long, thus, creating two bad situations:

"first, no one wants to type lists with 15 or 20 members;

second, a long list is error prone in that a programmer

could easily permute the order of arguments or leave one

16'°

out" (Ref 6:298). In an effort to eliminate this problem,

FORTRAN allows COMMON blocks to be defined and shared among

subprograms. Although the initial problem is solved by this

approach others are created. In making the module

interfaces more complex, the reliability of the program is

decreased and therefore debugging time is increased.

From a software engineering point of view this is not

really an acceptable situation. Therefore, a different type

of program structure was developed. This is known as block

structure and it uses the physical organization of the

modules to determine data access rights. Only modules that

are physically nested within another module can use the data

within that module. This allows the user to set up a

program in such a way that any module has access only to the

data that it needs (Ref 6:298-299).

As an added advantage, a block structure approach

allows some space to be saved at execution time. Since the

data for a particular block is only needed while that block

is executing, dynamic storage allocation can be used. When

7J a block is activated, storage for its variables is allocated

and when execution for that block is complete the storage is
returned to be used by the next block. Depending on the

program, this could result in a major savings of storage

space (Ref 6:300).

17

PROGRAM one

SECTION one

PAGE one

SEGMENT one

END SEGMENT one

END PAGE one

END SECTION one

END PROGRAM one.

Figure 4. ASGOL Program Levels

In the origional design of ASGOL it was desired that it

be as efficient and easy to use as possible. In addition

the amount of storage used by the system was a concern.

Therefore, it was decided to use a block structure. Not

only was the design of ASGOL programs made simpler through

the use of modularity but a savings in storage was also

realized. Within an ASGOL program there are four possible

levels that can be used. They are PROGRAM, SECTION, PAGE,

and SEGMENT and they are the only procedure blocks

available. Figure 4 shows the relationship of tilese levels.

See Appendix F for a detailed discussion of their meaning

and use.

18

And Control Snug

Looping and control statements are an essential part of

any language. Because few applications allow a strictly

sequential approach, a language is severely restricted

without these statements. Therefore, ASGOL was modified to

include five looping and control statements.

IF TEN I ELSE. This statement can take one of the

following two forms:

IF expression THEN commands END IF

IF expression THEN commands ELSE commands END IF

FO.R. The for statement also has two forms and is used

to repeat a sequence of instructions a specific number of

times.

FOR variable = expression TO expression BY expression

DO commands END FOR

FOR variable = expression DOWN TO expression BY

expression DO commands END FOR

WHILE VDQ. This statement is used to execute a sequence

of instructions as long as a given expression is true.

WHILE expression DO commands END WHILE

19

REPEAT UNTIL. This statement is the same as the WHILE

DO with the exception that the instructions are executed

until the specified expression becomes true.

REPEAT commands UNTIL expression END REPEAT

LAU. This statement provides a multi-path branching

capability for ASGOL. Although the same function could be

accomplished using nested IF THEN ELSE statements, the CASE

statement was provided for clarity.

CASE variable OF

list : commands

list : commands

OTHERS : commands

END CASE

See Chapter 4 for a discussion of how these statements

are handled by the semantic routines and Appendix F for

rules concerning their use.

20

7--tY Y "'.W ez

I~g. Parser

Scnner

The first step in any compiler or interpreter system is

to reduce the input language string to a form that is more

easily used by the computer. It is both wasteful and

unnecessary to deal with a character string such as

"DECLARE" when an integer value would work just as well.

The integer could convey the same meaning and also save

space while simplifying processing. This is just one of the

functions of the scanner.

Since the input STREAM is treated as one continuous

character string, the scanner must perform all the following

functions:

1. Identify reserved words, PROGRAM, DECLARE,

FRAME, etc;

2. Identify special symbols, =, <, >, etc;

3. Identify and convert numeric constants, 10,

27.4, 131, etc;

4. Identify and collect character constants,

"ABC", "X123", etc;

5. Identify and collect identifiers.

ASGOL's scanner performs all of these functions and

conveys the results to the rest of the system through its

calling parameter, ITOK, and several associated variables,

RVAL, IVAL, SYMSTR, STRING, and SLNGTH. For reserved words

21

and special symbols ITOK's value is an index into the

vocabulary array. No other information is required for

processing of this type of information since it is usually

only necessary to know that the reserved word or special

symbol is present. The remaining three functions, however,

require more information to be meaningful.

When a numeric constant is encountered, ITOK, is set to

a predefined value and the constant is converted to machine

format. It is then placed into one of two variables; IVAL,

if it is an integer, or RVAL, if it is real. These

variables are in the COMMON block LEXCOM so they are thus

available to the rest of the system. Character constants

are handled in a similar manner with a predefined value

being assigned to ITOK. No conversion is performed though.

Instead the characters are placed one character at a time,

as they are read, into the array STRING. When the end of

the string is detected, STRING contains the entire character

string with one character stored per word. The string's

length is then put into the variable SLNGTH. STRING and

SLNGTH can also be found in the COMMON block LEXCOM. If the

scanner cannot identify a character string as either a

reserved word or a special symbol, it assumes the string is

an identifier. In this case the string is put into the

array SYMSTR, also found in LEXCOM, and ITOK is set to the

predefined identifier value.

22

GETLIMAIN

41 >~~~1-

GETLIN NUMBER IFNTDK

DIGIT LETTER

Figure 5. Scanner Organization

Construction. Figure 5 shows the relationsnips between

the various scanner routines, They consist of the main

routine, the input routine GETLIN, the conversion routine

NUMBER, and the identification routines IFNDTK, DIGIT, and

LETTER. See Appendix E for more information on the specific

functions of each of these routines.

I

23

